Prediction of start and finish transformation temperatures for different types of weld metals via machine learning
Tadeu Messias Donizete Borba, Louriel Oliveira Vilarinho
Abstract
The interactions of different alloying elements in metallic alloys, combined with the application of thermal cycles and/or welding operations, have a significant impact on the microstructural characteristics and mechanical properties of materials. Continuous cooling transformation (CCT) diagrams, typically obtained through dilatometric tests, describe phase transformations in specific alloys during thermal cycling. However, this methodology requires long processing times, specialized equipment, and expertise, making it unsuitable for fast decision-making. This work presents a Machine Learning-based model, developed and validated to predict austenite decomposition during continuous cooling, using a dataset of experimental CCT diagrams of different weld metals available in the literature. The results demonstrate that the CCT diagrams predicted by the Machine Learning approach can be used as a promising tool to assist in studying microstructural changes occurring during the continuous cooling of weld metals. Moreover, this method can complement dilatometric analysis, reducing experimental time and costs while providing fast and accurate responses that could support the development of welding procedures.
Keywords
Referências
1 Easterling KE, Easterling K. Introduction to the physical metallurgy of welding. Woburn: Butterworth-Heinemann; 2013.
2 Schulze G. Die Metallurgie des Schweißens - Eisenwerkstoffe und Nichteisenmetallische Werkstoffe. London: Springer; 2010. http://doi.org/10.1007/978-3-642-03183-0.
3 Granjon H. Fundamentals of welding metallurgy. Cambridge: Woodhead Publishing; 1991. http://doi. org/10.1533/9781845698805.
4 Linnert GE. Welding metallurgy: fundamentals. Vol. 1. 4th ed. Miami: American Welding Society; 1995.
5 Kou S. Welding metallurgy. 3rd ed. Nashville: John Wiley & Sons; 2020.
6 Vimalan G, Ravichandran G, Muthupandi V. Phase transformation behaviour in P91 during post weld heat treatment: a gleeble study. Transactions of the Indian Institute of Metals. 2017;70(3):875-885. http://doi. org/10.1007/s12666-017-1075-0.
7 Huang Q, Volkova O, Biermann H, Mola J. Dilatometry analysis of dissolution of Cr-rich carbides in martensitic stainless steels. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2017;48(12):5771-5777. http://doi.org/10.1007/s11661-017-4377-2.
8 Shahriari B, Vafaei R, Sharifi EM, Farmanesh K. Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel. International Journal of Materials Research. 2017;108(9):715-724.
9 López-Martínez E, Vázquez-Gómez O, Vergara-Hernández HJ, Campillo B. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels. International Journal of Minerals Metallurgy and Materials. 2015;22(12):1304-1312. http://doi.org/10.1007/s12613-015-1198-4.
10 Caballero FG, Capdevila C, De Andrés CG. Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure. Journal of Materials Science. 2002;37(16):3533-3540. http://doi.org/10.1023/A:1016579510723.
11 Borba TMD, Modenesi PJ. Influência do ciclo térmico de soldagem no crescimento de grão, nas transformações microestruturais e na formação de MA na GGZAC de aço TMCP. Soldagem e Inspeção. 2019;24:e2406. http://doi. org/10.1590/0104-9224/si24.06.
12 Bhatti AA, Barsoum Z, Murakawa H, Barsoum I. Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion. Materials & Design. 2015;65:878-889. http://doi. org/10.1016/j.matdes.2014.10.019.
13 Abreu SGPT, Porcaro RR, Faria GL, Godefroid LB, Pereira IC, Souza SS. Austenitizing temperature effects on the martensitic transformation and its influence on simulated welding residual stresses in a microalloyed-steel. Materials Research. 2023:26:e20220624.
14 Imai S. Recent progress and future trends for shipbuilding steel. Weld. Int. 2008;22(11):755-761. http://doi. org/10.1080/09507110802550661.
15 Kasuya T, Yurioka N, Okumura M. Methods for predicting maximum hardness of heat-affected zone and selecting necessary preheat temperature for steel welding. Nippon Steel Technical Report. 1995;65:7-14.
16 Yurioka N. Welding of TMCP steels. Journal of the Japan Welding Society. 1992;61(4):288-304. http://doi. org/10.2207/qjjws1943.61.4_288.
17 Pohjonen A, Somani M, Porter D. Modelling of austenite transformation along arbitrary cooling paths. Computational Materials Science. 2018;150:244-251. http://doi.org/10.1016/j.commatsci.2018.03.052.
18 Ollat M, Militzer M, Massardier V, Fabregue D, Buscarlet E, Keovilay F, et al. Mixed-mode model for ferrite-toaustenite phase transformation in dual-phase steel. Computational Materials Science. 2018;149:282-290. http://doi. org/10.1016/j.commatsci.2018.02.052.
19 Li MV, Niebuhr DV, Meekisho LL, Atteridge DG. A computational model for the prediction of steel hardenability. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 1998;29(3):661- 672. http://doi.org/10.1007/s11663-998-0101-3.
20 Enomoto M. Prediction of TTT-diagram of proeutectoid ferrite reaction in iron alloys from diffusion growth theory. ISIJ International. 1992;32(3):297-305. http://doi.org/10.2355/isijinternational.32.297.
21 Saunders N, Guo Z, Miodownik AP, Schillé J-P. The calculation of TTT and CCT diagrams for general steels. JMatPro Software Literature, pp 1–12. http://www.thermotech.co.uk/resou rces/TTT_CCT_Steels.pdf. 2004.
22 Chakraborty S, Das P, Kaveti NK, Chattopadhyay PP, Datta S. MCDM towards knowledge incorporation in ANN models for phase transformation in continuous cooling of steel. Multidiscipline Modeling in Materials and Structures. 2019;15(1):170-186. http://doi.org/10.1108/MMMS-01-2018-0002.
23 Pan G, Wang F, Shang C, Wu H, Wu G, Gao J, et al. Advances in machine learning- and artificial intelligence-assisted material design of steels. International Journal of Minerals Metallurgy and Materials. 2023;30(6):1003-1024. http://doi.org/10.1007/s12613-022-2595-0.
24 Oliveira AP, Lourenço LS. Use of auto machine learning, artificial intelligence, for predictive modeling of metallurgical properties of hot-rolled steel products. Tecnologica em Metalurgia, Materiais e Mineração. 2025;22:e3149. http://doi.org/10.4322/2176-1523.20243149.
25 Duan H, He H, Yue S, Cao M, Zhao Y, Zhang Z, et al. Analysis of high-cycle fatigue life prediction of 304 stainless steel based on deep learning. Journal of the Minerals Metals & Materials Society. 2023;75(11):4586-4595. http://doi. org/10.1007/s11837-023-06042-8.
26 Srivastava AK, Patra PK, Jha R. AHSS applications in Industry 4.0: determination of optimum processing parameters during coiling process through unsupervised machine learning approach. Materials Today. Communications. 2022;31:103625. http://doi.org/10.1016/j.mtcomm.2022.103625.
27 Hamdi A, Merghache SM. Application of artificial neural networks (ANN) and gray relational analysis (GRA) to modeling and optimization of the material ratio curve parameters when turning hard steel. International Journal of Advanced Manufacturing Technology. 2023;124(10):3657-3670. http://doi.org/10.1007/s00170-023-10833-3.
28 Trzaska J, Jagiełło A, Dobrzanski LA. The calculation of CCT diagrams for engineering steels. Archives of Materials Science and Engineering. 2009;39(1):13-20.
29 Wang J, van der Wolk PJ, van der Zwaag S. Effects of carbon concentration and cooling rate on continuous cooling transformations predicted by artificial neural network. ISIJ International. 1999;39(10):1038-1046. http://doi. org/10.2355/isijinternational.39.1038.
30 Malinov S, Sha W, Guo Z. Application of artificial neural network for prediction of time–temperature– transformation diagrams in titanium alloys. Materials Science and Engineering: A. 2000;283(1-2):1-10.
31 Martin H, Amoako-Yirenkyi P, Pohjonen A, Frempong NK, Komi J, Somani M. Statistical modeling for prediction of CCT diagrams of steels involving interaction of alloying elements. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science. 2021;52(1):223-235. http://doi.org/10.1007/s11663-020- 01991-w.
32 Pohjonen A, Somani M, Porter D. Effects of chemical composition and austenite deformation on the onset of ferrite formation for arbitrary cooling paths. Metals. 2018;8(7):540. http://doi.org/10.3390/met8070540.
33 Jiang X, Yin H-Q, Zhang C, Zhang R-J, Zhang K-Q, Deng Z-H, et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction. Computational Materials Science. 2018;143:295-300. http://doi. org/10.1016/j.commatsci.2017.09.061.
34 García PJ No, García-Gonzalo E, Álvarez Antón JC, González Suárez VM, Mayo Bayón R, Mateos Martín F. A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance. Journal of Computational and Applied Mathematics. 2018;330:877-895. http://doi.org/10.1016/j.cam.2017.02.031.
35 Trzaska J, Dobrzański LA. Modelling of CCT diagrams for engineering and constructional steels. Journal of Materials Processing Technology. 2007;192–193:504-510. http://doi.org/10.1016/j.jmatprotec.2007.04.099.
36 You W, Xu W, Liu Y, Bai B, Fang H. Effect of chromium on CCT diagrams of novel air-cooled bainite steels analyzed by neural network. Journal of Iron and Steel Research International. 2007;14(4):39-42. http://doi. org/10.1016/S1006-706X(07)60055-7.
37 Chakraborty S, Chattopadhyay PP, Ghosh SK, Datta S. Incorporation of prior knowledge in neural network model for continuous cooling of steel using genetic algorithm. Applied Soft Computing. 2017;58:297-306. http://doi. org/10.1016/j.asoc.2017.05.001.
38 Zhang B, Wang B, Xue W, Ullah A, Zhang T, Wang H. Development of a machine learning model for prediction of continuous cooling transformation diagrams in welding heat-affected zone. Journal of Materials Science. 2023;58(11):4795-4808. http://doi.org/10.1007/s10853-023-08322-9.
39 Zhang Z, Farrar RA. An atlas of continuous cooling transformation (CCT) diagrams applicable to low carbon low alloy weld metals. Bournemouth: The Institute of Materials; 1995.
40 Ito Y, Nakanishi M, Komizo Y. Effect of oxygen on transformation of low carbon weld metal. Study on microstructure and toughness of the weld metal (1st report). Journal of the Japan Welding Society. 1981;50(12):1211-1218. http://doi.org/10.2207/qjjws1943.50.1211.
41 Ito Y, Nakanishi M, Komizo Y. Hardenability of the weld metal compared with rolled steel plate. Study on microtructure and toughness of the weld metal (3rd report). Journal of the Japan Welding Society. 1982;51(4):354- 359. http://doi.org/10.2207/qjjws1943.51.354.
42 Automeris LLC. Software WebPlotDigitizer [cited 2025 Mar 25]. Available at: https://automeris.io/ WebPlotDigitizer/
43 W3Schools. Python Tutorial [cited 2025 Mar 25]. Available at: https://www.w3schools.com/python/default.asp
44 Scikit-learn. Sklearn [cited 2025 Mar 25]. Available at: https://scikit-learn.org/stable/modules/classes.html#modulesklearn.ensemble
45 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. [cited 2025 Mar 25]. Available at: https://hastie.su.domains/ElemStatLearn/
46 Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI (United States). 1995;14(2):1137-1145.
47 Krauss G. Steels: processing, structure, and performance. 2nd ed. Materials Park: ASM International; 2015.
48 Bhadeshia H, Honeycombe R. Steels: microstructure and properties. 4th ed. Oxônia: Butterworth-Heinemann; 2017.
49 Bhadeshia HKD. Bainite in steels: theory and practice. 3rd ed. London: CRC Press; 2019.
50 Scotti A, Li H, Miranda RM. A round-robin test with thermal simulation of the welding HAZ to draw CCT diagrams: a need for harmonised procedures and microconstituent terminologies. Soldagem e Inspeção. 2014;19(3):279-290. http://doi.org/10.1590/0104-9224/SI1903.11.
51 Pawlowski B. Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels. Journal of Achievements in Materials and Manufacturing Engineering. 2012;54(2):185-193.
52 Liu T, Long M, Fan H, Chen D, Chen H, Duan H, et al. Dilatometric determination of four critical temperatures and phase transition fraction for austenite decomposition in hypo-eutectoid steels using peak separation method. Journal of Materials Research. 2018;33(8):967-977. http://doi.org/10.1557/jmr.2017.484.
53 Leach L, Kolmskog P, Höglund L, Hillert M, Borgenstam A. Use of Fe-C information as reference for alloying effects on BS. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science. 2019;50(10):4531-4540. http://doi.org/10.1007/s11661-019-05371-1.
Submetido em:
25/03/2025
Aceito em:
06/06/2025