CÁLCULO ITERATIVO DA CARGA CIRCULANTE EM CIRCUITOS FECHADOS
ITERATIVE CALCULATION OF CIRCULATING LOAD IN CLOSED-CIRCUITS
Silva, André Carlos; Silva, Elenice Maria S.; Rezende, Ricardo Antônio de
http://dx.doi.org/10.4322/tmm.2013.036
Tecnol. Metal. Mater. Min., vol.10, n3, p.257-263, 2013
Resumo
Um problema para a resolução de balanços de massa em usinas de processamento mineral é o cálculo da carga circulante em circuitos fechados. Uma família de métodos possíveis de aplicação para a resolução deste cálculo são os métodos iterativos. O presente trabalho apresenta um algoritmo iterativo de baixa complexidade para o cálculo de carga circulante em circuitos fechados, possibilitando a construção de balanços confiáveis de massa, metalúrgico e de água. A validação do algoritmo proposto é realizada com o auxílio do software BILCO da Caspeo e com dados industriais reais para dois diferentes tipos de circuitos fechados. Os resultados obtidos são satisfatórios no que tange ao resultado calculado, à velocidade de processamento, à convergência da solução e ao número de iterações necessárias para o cálculo da carga circulante.
Palavras-chave
Balanço de massa, Carga circulante, Circuito fechado
Abstract
A problem in mass balance resolution in mineral processing plants is the circulation load in closed-circuits. A family of methods which can be used to solve the circulating load is the iterative methods. This paper shows a low complexity algorithm to calculate the circulation load in closed circuits which allows the construction of mass, metallurgic and water reliable balances. The proposed algorithm was validated against results from Caspeo BILCO software and real industrial data for two different closed-circuits types. The obtained results are satisfactory with respect to the calculated result, processing speed, solution convergence and number of iterations needed to evaluate the circulation load.
Keywords
Mass balance, Circulating load, Closed-circuit
Referências
1. Chen X, Li Q, Fei S. Constrained model predictive control in ball mill grinding process. Powder Technology. 2008;186:31-39. http://dx.doi.org/10.1016/j.powtec.2007.10.026
2. Lestage R, Pomerleau A, Hodouin D. Constrained real-time optimization of a grinding circuit using steady-state linear programming supervisory control. Powder Technology. 2002;124:254-263. http://dx.doi.org/10.1016/S0032- 5910.(02)00028-1
3. White JW, Winslow RL, Rossiter GJ. A useful technique for metallurgical mass balances: applications in grinding. International Journal of Mineral Processing. 1977;4:39-49. http://dx.doi.org/10.1016/0301-7516(77)90030-8
4. Wills BA. Complex circuit mass balancing: a simple, practical, sensitivity analysis method. International Journal of Mineral Processing. 1986;16:245-262. http://dx.doi.org/10.1016/0301-7516(86)90034-7
5. Yingling JC. Circuit analysis: optimizing mineral processing flowsheet layouts and steady state control specifications. International Journal of Mineral Processing. 1990;29:149-174. http://dx.doi.org/10.1016/0301-7516(90)90051-Y
6. Tsakalakis K. Use of a simplified method to calculate closed crushing circuits. Minerals Engineering. 2000;13:1289- 1299.. http://dx.doi.org/10.1016/S0892-6875(00)00111-4
7. Meloy TP. Analysis and optimization of mineral processing and coal-cleaning circuits: circuit analysis. International Journal of Mineral Processing. 1983;10:61-80. http://dx.doi.org/10.1016/0301-7516(83)90033-9
8. Jankovic A, Valery W. Closed circuit ball mill: basics revisited. Minerals Engineering. 2013:43-44:148-153. http:// dx.doi.org/10.1016/j.mineng.2012.11.006
9. Furuya M, Nakajima Y, Tanaka T. Theoretical analysis of closed-circuit grinding system based on comminution kinetics. Industrial and Engineering Chemistry Process Design and Development. 1971;10:449-456. http://dx.doi. org/10.1021/i260040a004